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I. INTRODUCTION

Pulsed lasers have been used to produce sparks (breakdown) in gases for
nearly two decades. Over the intervening years, the details of the laser
microplasma formation pfo~ess have been extensively studied and are currently
fairly well understood. One of the applications of these laser-produced
sparks hgs been to ignite reactive gases for minimum ignition energy
studies. A problem that was quickly discovered in this work was that the
laser sparks exhibited a strong threshold behavior for their formation and
that once formed, they were frequently so vigorous that they drove detonable
gas mixtures into detonation.

Recently, our laboratory has demonstrated the efficient production of
microplasmas in various gases by using tunable ultraviolet lasers whose
wavelengths correspond to resonance excitation of the constituent atoms.
Specifically, we have observed resonant microplasma formation in flows of
oxygen-atom containing molecules such as 02 and N20 with the laser set at
226 nm, a wgv length which corresponds to oxygen-atom two-photon
excitation. Similarly, we have observed resonant laser-produced
microplasmas in H2 flows with the laser set at 243 nm, a hydrogen-atom two-
photon excitation wavelength.7 These uv laser produced microplasmas differ
significantly from those formed by non-resonant laser radiation in that they
are formed with much lower values of incident laser energy (ILE) required, and
also they are controlled much more easily with respect to the amount of laser
energy that is deposited into the focal volume, i.e., the sharp threshold for
breakdown is not observed. A mechnism for the microplasma formation process
has been deduced and involves three sequential steps: (a) the multiphoton
photochemical production of substituent atoms (H and 0), (b) resonant
multiphoton ionization of these atoms to efficiently produce "seed" electrons
in the laser focal volume, and (c) microplasma formation in the focal volume
through the process of electron multiplication due to gascade ionization and
plasma heating via the inverse brehmsstrahlung effect.

We have previously used the e7 resonant microplasmas for the ignition of
112/02 and H2/N20 premixed flows. We have extended this work to include
more practical laser systems, ones that could be possibly used in actual field
applications. Specifically, since we are interested in the potential of this
new igniter source for the National Aerospace Plane (NASP) applications, we
have chosen to work with one of the -ommon uv gas discharge lasers, the ArF
excimer laser, which operates at 193 nm. This paper describes not only the
results of our ignition studies with the ArF laser, but also the results of
studies aimed at the understanding of some of the underlying physical and
chemical mechanisms entailed in this phenomenon.

II. EXPERIMENTAL

The experimental apparatus has been described previously.6 Briefly, a
Lumonics excimer laser (Hodel 440) is focused by a 10 cma focal length lens
into a premixed flow of H2/02 or H2/air at room temperature. This flow passes
through the orifice (0.7 mm) of a jet burner and intersects the laser focal
volume approximately 1-2 mm above the burner surface. The criterion for
ignition is straightforward, i.e., ignition is recorded when a flame appears
following the laser pulse. The flow conditions are set so that the laser-
generated flame is stabilized on the burner. Following ignition, the flame is



quickly extinguished and the water-cooled burner is allowed to return back to
ambient conditions.

For the H2 microplasma formation experiments, the laser used is a
Nd:YAG/pumped dye laser system whose radiation in the wavelength region near
243 nm is generated by frequency doubling the dye laser and mixing this
doubled beam with the residual 1.06 micron beam from the Nd:YAG pump laser.
Typically for these experiments we operated in the 0.1-1 mJ/pulse range while
the system is capable of delivering up to 3 mJ/pulse.

For the oxygen-atom spin-orbit studies, the Nd:YAG/dye laser was operated
at 226 nm (0-atom two-photon transition) with low pulse energies used (0.5 mJ
or less) and a long focal length lens (f.l. = 40 cm) so as to avoid any
saturation of the twu-photon fluorescence signal. Also, the excimer laser was
operated at similar modest pulse energies and long focal length lens
conditions to avoid multiphoton photolysis/excitation effects. Oxygen atom
emission at 845 nm was passed through a combination of interference filter and
ArF radiation reflector and subsequently detected by a photomultiplier tube.

III. RESULTS

A. H9 /02 and H2/Air Ignition by the ArF Excimer Laser

One of the most important considerations in the development of a
practical laser igniter for in-flight use is the laser itself. A tunable
laser system, such as is required for 0-atom excitation at 226 nm, is not
likely to be used in a supersonic aircraft. However, as mentioned before, a
much more simple device such as an excimer laser can be envisioned as being
made flight worthy. Figure I shows the dependence of the incident laser
energy (ILE) necessary for the ignition of a premixed flow of I'2/02 on the
equivalence ratio. The ArF excimer laser was operated in the unstable
resonator mode which yields a much less divergent beam as compared to the
stable resonator, and thus a tighter focus. The minimum of the curve shows
that the ArF laser ignition process is indeed very efficient, with less than 1
mJ pulse energy required. Unlike our previous work using the tunable uv
laser, the secific mechanisms for microplasma formation using the broadband
(ca. 100 cm- ) fixed frequency of the excimer laser is not yet well-
understood. It may include at least two possibilities; (1) a 1+1 multiphoton
ionization (MPI) of 02 involving the Schumann-Runge (S-R) bands, and (2) the
2+1 MPI of H2 going through the E,F electronically excited states.
Determining which of these two mechanisms, or possibly even some other one, is
responsible for the efficient ignition awaits further work. For H2/air, the
results are qualitatively similar to those for H2/02 with the exception that
the minimum ILE values were found to be around 6 niJ, which is considerably
higher than that found for H2/02. We speculate that these ILE values for
H2/air can be dropped considerably by using a tunable excimer laser which is
tuned to wavelengths of strong absorption (see below).

B. Microplasma Formation Mechanism

As mentioned above, the microplasma formation mechanism(s) for the ArF
excimer laser are not yet fully understood. However, we have conducted
further studies of the uv microplasma formation process in general using a
tunable laser at 243 nm focussed into a H2 roon temperature flow.
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Figure 1. Dependence of ILE on Equivalence Ratio for H2/02 Premixed
Flows Using ArF Laser (193 nm) (Unstable Resonator

Specifically, we compared room temperature D2 gas behavior with that of H 2

gas. Figure 2 shows the wavelength dependence foe microplasma formation in
both gases at 70 torr. In both cases we were monitoring the H/D atom emission
at 656 nm (n=3 + n=2). A well-defined isotopic shift is clearly evident with
a wavelength separation corresponding to about 22 cm . This is exactly the
energy spacing difference given in energy level tables for the n=2 upper level
involved in the two-photon excitation of H and D atoms (n=l + n=2). We also
observe the same isotopic shift at atmospheric pressure with the only
difference being broader excitation spectral widths. Ie believe that these
substantial widths observed in ignition/microplasna formation are due to the
finite absorption in the "wings" of the atomic transitions. This isotopic
shift behavior further substantiates our interpretation of the microplasma
formation mechanism, i.e., multiphoton photolysis of parent molecules to form
atoms, resonant multiphoton ionization of these atoms, followed by microplasma
formation in the laser focal volume using free electrons liberated in the
previous step.

Recently we completed a study on the photochemical meghanisms involved in
ArF laser photolysis of Pmall carbon-containing molecules. Ie have expanded
this work to include molecular hydrogen. Figure 3 shows the time-of-flight
mass spectra (TOF-MS) generated during the irradiation of a molecular beam of
H2 by an ArF (193 nm) exciner laser. Our interpretation of this data is that

3
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Figure 2. Excitation Spectra for Microplasma Formation in H2 and
D2 at 70 Torr and Room Temperature. Emission monitored at 656 nm.

under the collisionless conditions of this experiment, the H2 first ionizes
via a 2+1 process involving the E and F states, and then subsequently the
molecular ion is photolyzed to produce H ions. If the same experiment is
repeated using the laser set at the peak of the two-photon excitation at
243 nm (see Figure 2), then there is no signal from either of these ionic
species. Similarly, with the laser set at 225.6 nn (0-atom two-photon
transition) we did not detect either the molecular or atomic oxygen ions.
This data clearly indicates the importance of collisions in inducing
photofragmentation. Studies are currently underway to better understand the
importance of collisions on these pathways.

C. Atmospheric Absorption Effects on ArF Laser Ignition Studies

In the course of doing the experiments described in Section A above, we
became concerned that the values for the incident laser energy (ILE) that we
were measuring may depend on the distance of the ignition site from the laser
due to beam attenuation by atmospheric gases, i.e., 02 absorption in the S-R
bands. In order to determine the severity of this potential problem we
measured the spectral profile of the transmitted ArF laser beam as propagated
through 20 feet of helium gas as compared to 20 feet of air (Fig 8 re 4). The
He data shows the expected broadband ArF laser spectral profile except for

4
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the strong self-absorption feature near 193.1 nm.1 1 The air prof 1 e, in
comparison, clearly shows a number of 02 absorption line features with the
laser beam attenuation measured around 65%. However, the impact of the
atmospheric attenuation of the laser beam on the ignition behavior of a
premixed H2/02 flow appears to be quite dramatic (Figure 5). The data in
Figure 5 suggest that laser radiation within the 02 absorption spectrum must
be important in the ignition process otherwise one would not expect to see
such a dramatic difference. Clearly, this phenomenon where laboratory air
acts as an "active optical filter" needs to be properly accounted for in ArF
laser experiments that are wavelength specific.
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Figure 5. Effect of ArF Laser Attenuation by Laboratory Air on
Ignition of 112/02 Premixed Gases.

(A) Pathlength = 20 feet, (B) Pathlength = 1 foot.

D. Nascent Spin-Orbit Distribution of Oxygen Atoms

When photons from an ArF laser beam are absorbed by 02' the excited
molecules predissociate very rapidly such that more than 99% of these excited4
olecules break apart to form oxygen atoms in the ground electronic state (2p4

F). However, this O-atoi state is split into three spin-orbit J states which
give rise to the frequently seen spectral "triplet" in fluorescence/ionization

26



excitation scans or ignition spectral scans around 226 nm.6 Very little
attention has been paid to the nascent distribution of these oxygen atoms into
the different spin-orbit states upon photolysis or as reaction products, but
this could be important in air-breathing combustion applications, particularly
in low pressure/high flow speed conditions where there may not be sufficient
time/collisions to "thermalize" these three states. The reason for this is
that a substantial difference in the elementary reaction rate constants for
the three different O-atom lpin-orbit states may exist even for such important
combustion reactions as 0 ( P2 ,1,0 ) + H2 + products. Such spin-orbit state
specific rate constant differences have been previously observed in atoms like
Br, F, I, Ca, and Sr (typically fctors of 2-10) with extreme cases showing 5
orders of magnitude differences. Figure 6 shows a clear case of non-
statistical behavior in the photolysis of 02 by the ArF laser. We have also
determined the rate of equilibration for these oxygen-atom spin-orbit states
with molecular oxygen as the collision partner (Figure 7).

Nascent Thermalized

3P 3Pl 312 N2 Collision Partner

loo rorr

3p 0  
3P1

3
P

0

225.65 226.06 226.23 225.65 226.06 226,23

Wavelength (nm) Wavelength (nm)

Figure 6. O-Atom Spin-Orbit State Distribution fron ArF Laser
Photolysis of 02. Nascent conditions: 02 = 160 mtorr, 40 nsec delay.
Thermalized conditions: 02 = 300 mtorr, N2 = 100 torr, 40 nsec delay.
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E. Ignition of Other Reactive Gases

The study of multiphoton photochemical ignition via fuel molecules was

expanded to flowing C2 H2 /air and C2 H2 /O2 mixtures again irradiated by the ArF
(193 nm) excimer laser. Figure 8 shows the time-dependence of the
transmitted, ca. 15 nsec, focussed laser beam as it passes above the burner
orifice with no flow (Figure 8a) and a C2H 2 flow (Figure 8b) in which a
nicroplasma is formed. As expected, the bulk of the absorption (Figure 8c)
occurs later in the laser pulse, since it takes time for the nicroplasma (the
greatest absorber of radiation) to build-up. Figure 9 shows the dependence of
the ILE on equivalence ratio for C21H2 /air. The scale on the right, i.e., the
iupper limit to the minimum ignition energy" was determined by calibrating a
laser energy detector which measured the amount of laser energy transmitted
with and w/o a reactive flow. The difference represents the amount of laser
radiation absorbed and/or scattered. The minimua values around 40 microjoules
appear to be a factorlif 2 higher than literature values for closed bomb spark
ignition of C2 H2 /air. Such a low uv laser ignition energy value, even
though higher than the closed bomb spark value, oay indicate that the radicals
formed near the focal volume might play an important role in ignition kernel
gro.'th. Recent experiments using much longer focal length lenses have
indicated that the ArF laser can ignite a C2 H2 /air mixture apparently without
the need to form a microplasma with, however, somewhat higher levels of ILE
required.
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IV. SUMMARY

The ArF excier laser has been demonstrated to readily ignite flows of
premixed H2/02 , H2/air, C2H2/02 , and C2H2/air. In all cases the laser couples
resonantly with one or both of the molecular gaseous constituents. For H2/0 2
and H2 /air systems the laser energy efficiency would most likely improve if
the ArF radiation was tuned to the apropriate molecular (H2 or 02)
transition. These results are very encouraging with respect to the potential
practical application of uv laser ignition for supersonic/hypersonic
airbreathing engines. The ArF laser wavelength region (193 nm), however, has
certain disadvantages primarily due to atmospheric gas absorption which
requires purging of the beam path or use of far-uv optical fibers which are
presently quite lossy. Nevertheless, in the case of supersonic/hypersonic
reactive flows where the incoming air is substantially shock-heated, laser
radiation in the 200-250 nm region may work quite well, but this has not yet
been demonstrated.
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